3,953 research outputs found

    Why current-carrying magnetic flux tubes gobble up plasma and become thin as a result

    Get PDF
    It is shown that if a current-carrying magnetic flux tube is bulged at its axial midpoint z=0 and constricted at its axial endpoints z=+h,-h, then plasma will be accelerated from z=+h,-h towards z=0 resulting in a situation similar to two water jets pointed at each other. The ingested plasma convects embedded, frozen-in toroidal magnetic flux from z=+h,-h to z=0. The counter-directed flows collide and stagnate at z=0 and in so doing (i) convert their translational kinetic energy into heat, (ii) increase the plasma density at z~0, and (iii) increase the embedded toroidal flux density at z~0. The increase in toroidal flux density at z~0 increases the toroidal field Bphi and hence increases the magnetic pinch force at z~0 and so causes a reduction of the flux tube radius at z~0. Thus, the flux tube develops an axially uniform cross-section, a decreased volume, an increased density, and an increased temperature. This model is proposed as a likely hypothesis for the long-standing mystery of why solar coronal loops are observed to be axially uniform, hot, and bright.Comment: to appear in Physics of Plasmas 24 pages, 5 figure

    Unstable coronal loops : numerical simulations with predicted observational signatures

    Get PDF
    We present numerical studies of the nonlinear, resistive magnetohydrodynamic (MHD) evolution of coronal loops. For these simulations we assume that the loops carry no net current, as might be expected if the loop had evolved due to vortex flows. Furthermore the initial equilibrium is taken to be a cylindrical flux tube with line-tied ends. For a given amount of twist in the magnetic field it is well known that once such a loop exceeds a critical length it becomes unstableto ideal MHD instabilities. The early evolution of these instabilities generates large current concentrations. Firstly we show that these current concentrations are consistent with the formation of a current sheet. Magnetic reconnection can only occur in the vicinity of these current concentrations and we therefore couple the resistivity to the local current density. This has the advantage of avoiding resistive diffusion in regions where it should be negligible. We demonstrate the importance of this procedure by comparison with simulations based on a uniform resistivity. From our numerical experiments we are able to estimate some observational signatures for unstable coronal loops. These signatures include: the timescale of the loop brightening; the temperature increase; the energy released and the predicted observable flow speeds. Finally we discuss to what extent these observational signatures are consistent with the properties of transient brightening loops.Comment: 13 pages, 9 figure

    Numerical simulations of kink instability in line-tied coronal loops

    Get PDF
    The results from numerical simulations carried out using a new shock-capturing, Lagrangian-remap, 3D MHD code, Lare3d are presented. We study the evolution of the m=1 kink mode instability in a photospherically line-tied coronal loop that has no net axial current. During the non-linear evolution of the kink instability, large current concentrations develop in the neighbourhood of the infinite length mode rational surface. We investigate whether this strong current saturates at a finite value or whether scaling indicates current sheet formation. In particular, we consider the effect of the shear, defined by where is the fieldline twist of the loop, on the current concentration. We also include a non-uniform resistivity in the simulations and observe the amount of free magnetic energy released by magnetic reconnection

    Automated LASCO CME catalog for solar cycle 23: are CMEs scale invariant?

    Full text link
    In this paper we present the first automatically constructed LASCO CME catalog, a result of the application of the Computer Aided CME Tracking software (CACTus) on the LASCO archive during the interval September 1997 - January 2007. We have studied the CME characteristics and have compared them with similar results obtained by manual detection (CDAW CME catalog). On average CACTus detects less than 2 events per day during solar minimum up to 8 events during maximum, nearly half of them being narrow (< 20 degrees). Assuming a correction factor, we find that the CACTus CME rate is surprisingly consistent with CME rates found during the past 30 years. The CACTus statistics show that small scale outflow is ubiquitously observed in the outer corona. The majority of CACTus-only events are narrow transients related to previous CME activity or to intensity variations in the slow solar wind, reflecting its turbulent nature. A significant fraction (about 15%) of CACTus-{\it only} events were identified as independent events, thus not related to other CME activity. The CACTus CME width distribution is essentially scale invariant in angular span over a range of scales from 20 to 120 degrees while previous catalogues present a broad maximum around 30 degrees. The possibility that the size of coronal mass outflows follow a power law distribution could indicate that no typical CME size exists, i.e. that the narrow transients are not different from the larger well-defined CMEs.Comment: 13 pages. ApJ, accepte

    m=1m=1 Ideal Internal Kink Modes in a Line-tied Screw Pinch

    Get PDF
    It is well known that the radial displacement of the m=1m=1 internal kink mode in a periodic screw pinch has a steep jump at the resonant surface where k⋅B=0\mathbf{k}\cdot\mathbf{B}=0. In a line-tied system, relevant to solar and astrophysical plasmas, the resonant surface is no longer a valid concept. It is then of interest to see how line-tying alters the aforementioned result for a periodic system. If the line-tied kink also produces a steep gradient, corresponding to a thin current layer, it may lead to strong resistive effects even with weak dissipation. Numerical solution of the eigenmode equations shows that the fastest growing kink mode in a line-tied system still possesses a jump in the radial displacement at the location coincident with the resonant surface of the fastest growing mode in the periodic counterpart. However, line-tying thickens the inner layer and slows down the growth rate. As the system length LL approaches infinity, both the inner layer thickness and the growth rate approach the periodic values. In the limit of small ϔ∌Bϕ/Bz\epsilon\sim B_{\phi}/B_{z}, the critical length for instability Lc∌ϔ−3L_{c}\sim\epsilon^{-3}. The relative increase in the inner layer thickness due to line-tying scales as ϔ−1(Lc/L)2.5\epsilon^{-1}(L_{c}/L)^{2.5}.Comment: To appear in Physics of Plasma

    Frequency division multiplexing readout of 60 low-noise transition-edge sensor bolometers

    Get PDF
    We demonstrate multiplexing readout of 60 transition edge sensor (TES) bolometers operating at 90 mK using a frequency division multiplexing readout chain with bias frequencies ranging from 1 to 3.5 MHz and with a typical frequency spacing of 32 kHz. The readout chain starts with a two-stage SQUID amplifier and has a noise level of 9.5 pA/ √{ Hz } . We compare current-voltage curves and noise spectra of TESs measured in a single-pixel mode and in a multiplexing mode. We also map the noise equivalent power (NEP) and the saturation power of the bolometers in both modes, where there are 43 pixels that do not show more than 10% difference in NEP and 5% in saturation power when measured in single pixel and multiplex modes. We have read out a TES with an NEP of 0.45 aW/ √{ Hz } in the multiplexing-mode, which demonstrates the capability of reading out ultra-low noise TES bolometer arrays for space applications

    Electrical cross talk of a frequency division multiplexing readout for a transition edge sensor bolometer array

    Get PDF
    We have characterized and mapped the electrical cross talk (ECT) of a frequency division multiplexing (FDM) system with a transition edge sensor (TES) bolometer array, which is intended for space applications. By adding a small modulation at 120 Hz to the AC bias voltage of one bolometer and measuring the cross talk response in the current noise spectra of the others simultaneously, we have for the first time mapped the ECT level of 61 pixels with a nominal frequency spacing of 32 kHz in a 61 × 61 matrix and a carrier frequency ranging from 1 MHz to 4 MHz. We find that about 94% of the pixels show an ECT level of less than 0.4%. Only the adjacent pixels reach this level, and the ECT for the rest of the pixels is less than 0.1%. We also observe higher ECT levels, up to 10%, between some of the pixels, which have bundled long, parallel coplanar wires connecting TES bolometers to inductor-capacitor filters. In this case, the high mutual inductances dominate. To mitigate this source of ECT, the coplanar wires should be replaced by microstrip wires in the array. Our study suggests that an FDM system can have a relatively low ECT level, e.g., around 0.4% if the frequency spacing is 30 kHz. Our results successfully demonstrate a low electrical cross talk for a space FDM technology

    The effect of angular momentum conservation in the phase transitions of collapsing systems

    Full text link
    The effect of angular momentum conservation in microcanonical thermodynamics is considered. This is relevant in gravitating systems, where angular momentum is conserved and the collapsing nature of the forces makes the microcanonical ensemble the proper statistical description of the physical processes. The microcanonical distribution function with non-vanishing angular momentum is obtained as a function of the coordinates of the particles. As an example, a simple model of gravitating particles, introduced by Thirring long ago, is worked out. The phase diagram contains three phases: for low values of the angular momentum LL the system behaves as the original model, showing a complete collapse at low energies and an entropy with a convex intruder. For intermediate values of LL the collapse at low energies is not complete and the entropy still has a convex intruder. For large LL there is neither collapse nor anomalies in the thermodynamical quantities. A short discussion of the extension of these results to more realistic situations is exposed.Comment: Latex, 21 pages, 5 figures. Corrected misprints in some equations and a few clarifying remarks adde

    Preferences and beliefs of Dutch orthopaedic surgeons and patients reduce the implementation of "Choosing Wisely" recommendations in degenerative knee disease

    Get PDF
    Purpose: The purpose of this study was to assess which factors were associated with the implementation of “Choosing Wisely” recommendations to refrain from routine MRI and arthroscopy use in degenerative knee disease. Methods: Cross-sectional surveys were sent to 123 patients (response rate 95%) and 413 orthopaedic surgeons (response rate 62%) fulfilling the inclusion criteria. Univariate and multivariate logistic regression analyses were used to identify factors associated with implementation of “Choosing Wisely” recommendations. Results: Factors reducing implementation of the MRI recommendation among patients included explanation of added value by an orthopaedic surgeon [OR 0.18 (95% CI 0.07–0.47)] and patient preference for MRI [OR 0.27 (95% CI 0.08–0.92)]. Factors reducing implementation among orthopaedic surgeons were higher valuation of own MRI experience than existing evidence [OR 0.41 (95% CI 0.19–0.88)] and higher estimated patients’ knowledge to participate in shared decision-making [OR 0.38 (95% CI 0.17–0.88)]. Factors reducing implementation of the arthroscopy recommendation among patients were orthopaedic surgeons’ preferences for an arthroscopy [OR 0.03 (95% CI 0.00–0.22)] and positive experiences with arthroscopy of friends/family [OR 0.03 (95% CI 0.00–0.39)]. Factors reducing implementation among orthopaedic surgeons were higher valuation of own arthroscopy experience than existing evidence [OR 0.17 (95% CI 0.07–0.46)] and belief in the added value [OR 0.28 (95% CI 0.10–0.81)]. Conclusions: Implementation of “Choosing Wisely” recommendations in degenerative knee disease can be improved by strategies to change clinician beliefs about the added value of MRIs and arthroscopies, and by patient-directed strategies addressing patient preferences and underlying beliefs for added value of MRI and arthroscopies resulting from experiences of people in their environment. Level of evidence: IV
    • 

    corecore